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A number of problems connected with improving traditional configurations are being en- 
countered at the current stage of supersonic aircraft design. Designers are searching for 
new three-dimensional shapes having optimum aerodynamic characteristics at hypersonic veloci- 
ties. In connection with the attempt to develop hypersonic aircraft, it is interesting to 
study fluid flow over plane elements - wings - at high supersonic velocities within a broad 
range of Reynolds numbers. With an increase in velocity and pressure, an increasingly large 
role is played by aerodynamic heating and friction on the surface of the body as it encounters 
a turbulent flow regime in a shock layer. In connection with this, it is necessary to study 
the effect of the geometry of the body on the distribution of heat flux, friction, the path 
of the shock wave, and other flow parameters. In limiting cases, a three-dimensional body 
such as an elliptical paraboloid is transformed into an axisymmetric body such as a paraboloid 
of revolution (with equal ellipse semi-axes) or a parabolic cylinder (if one semi-axis of the 
ellipse approaches infinity). 

In contrast to studies made earlier (see the survey [i], for example) which examined 
laminar flow regimes within the framework of the equations of a viscous shock layer, our goal 
here is to develop a single algorithm for calculating the parameters of viscous flow over 
long plane or axisymmetric bodies for a broad range of flow regimes - from laminar to turbu- 
lent. In the literature [i], most of the attention has been given to study of flow and heat 
transfer in the neighborhood of the forward critical point of axisymmetric bodies. In the 
case of prolate bodies, calculation of the integral drag and heat-transfer coefficients cha- 
racterizing their motion and heating in the atmosphere requires determination of the gas-dy- 
namic parameters along the entire generatrix of the body to its midsection. 

We will numerically examine hypersonic flow over a long blunt plane body (a parabolic 
cylinder) or an axisymmetric body (paraboloid of revolution) within the framework of the 
model of a viscous shock layer in a turbulent flow regime. This model is known [i] to be 
suitable for calculation of flow over bodies for which there is no Newtonian separation point 
and no surface curvature discontinuity. Paraboloids and parabolic cylinders meet these re- 
quirements, so they will be used as examples in our calculations. The parameters of flow 
about other bodies such as blunt cones (or wedges) may in some cases be comparable to the 
parameters for flow over a specially chosen paraboloid (or parabolic cylinder). It has been 
suggested that such a correspondence exists for cones and wedges with different flare half- 
angles. 

i. We will examine the hypersonic flow of a viscous gas over long smooth blunt plane 
bodies and solids of revolution. The system of equations describing the turbulent hypersonic 
viscous shock layer are obtained from the averaged Navier-Stokes equations. When written in 
dimensionless variables in a system of orthogonal curvilinear coordinates x, y connected with 
the surface of the body, the equations have the form [i] 
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where v = 0, 1 for the plane and axisymmetric cases, respectively; V~u, ~Y~v are components 
of the velocity vector corresponding to the x and y axes; p~V~p, s-lP=0, ToT, ~0~E, IE are 
the pressure, density, temperature, viscosity coefficient, and thermal conductivity of the 
gas; and ~ is the longitudinal curvature of the surface of the body. All of the linear 
dimensions are referred to the characteristic linear dimension R 0, while the normal coordinate 
is referred to gR0. As R0, we chose the radius of curvature of the blunt body at x = 0. The 
subscript w pertains to quantities on the surface of the body. The letter E represents the 
overall transport coefficients, accounting for molecular and turbulent transport. 

The equations of the turbulent viscous shock layer (I.i) must be supplemented by bound- 
ary conditions on the shock wave and the surface of the body. In the case of uniform flow 
over the body, the modified Rankine-Hugoniot equations for the shock wave can be written as 

[21 

2 v .  (u - -  uoo) = v:~ a~ y=ya(x) :  p v--u-~-z)=v~o,  p=voo, K a y '  

v . ( T + u 2  i ) =  gx aT 2 ~ ,  au azK a~ 4-Tu'g~-v,u~=cosa, v -= - - s i na  
(1 .2 )  

(a is the angle between a tangent to the surfce of the body and the symmetry axis). The fol- 
lowing contact conditions are assigned on the impermeable surface of the body: 

g = 0 :  u = 0 ,  v = O ,  T =  T~(x). (1.3) 

System (1.1-1.3) is unclosed, since we do not know the turbulent transport coefficients. 
Closure of the system requires making assumptions that would allow us to establish the rela- 
tionship between these quantities and the mean values. Here, we wiii use the algebraic model 
in [3]. In accordance with the latter, the overall viscosity coefficient and thermal conduc- 
tivity are linear combinations of the molecular and molar (turbulent) transport coefficients: 
UE = kl~ + k2~T, IE = ki% + k21T. The coefficients kl and k 2 were chosen so that UE + D in 
the laminar region and DE + ~T in the turbulent region. The coefficients ki and k 2 are given 
by the formulas 

1 k2 (~ll/~k)~ 
k i - -  ~ ,  ] Q  = 

i + k ~ ( ~ 1 ~ )  1 + k ~ (~{n , )  2 

(k = 0.4 is the Karman constant). 

Eddy viscosity is given by the Prandtl formula 

PT---- Pl = a~ ' 

where ~ (the mixing length) is calculated from the formula [4] 

l 1 -- exp (-- 8g/5) 
7 - = ~  ~ u e~-7~- 6-b7~ 

(5 is the thickness of the boundary layer). 

The coefficients of total viscosity have the form 

~ x = ~  n~+k%~ = ~ (~ ~' r0' 
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, (1.4) 

Total thermal conductivity can be represented as 
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~_~=Cp ~ +  o-$~ , (1.5) 

i f  we i n t r o d u c e  t h e  l a m i n a r  P r a n d t l  number  o = ~ C p / s  and  t u r b u l e n t  P r a n d t l  n u m b e r  ~ = PTCp/XT �9 

The expression for total viscosity [4] includes the parameter qk, characterizing the 
thickness of the viscous sublayer. The choice made for this parameter to a large extent 
determines the results of the calculations. In the present study, we determine ~k by using 
a parabolic approximation of the Reynolds number Re e constructed from the momentum thick- 
ness [5]: 

qk = ~ o  + c 0 g R % - - 4 )  q- b 0 g R e o  - - a )  2, 
o a = o , 2 ,  b = 5 7 ,  c = 3, % = 10, 

b = 0  ( l g R e o > a ) ,  c = 0  ( lgl~eo > 4 ) .  

An analysis of this formula shows that it refines the results only for low Re 0. 

To numerically solve the given problem, we write system (1.1-1.3) in Dorodnitsyn vari- 
ables: 

y Ys 

t " = ~ pdg, = z, q=- T , I  pdy, A 
o o 

oO, pr~V-- - -  a~ 
(1.6) 

Here, ~ is the stream function; and u 0 and T o are assumed to be equal to u~ and v~,2 respec- 
tively, since in the case of high Reynolds numbers (K + ~) it follows from boundary conditions 
(1.2) at y = Ys that u ~ u~, T ~ v~. Also, singularities which arise in the momentum equa- 
tion at the critical point E = 0 are solved at u0(~) = u~. 

We numerically integrated the resulting boundary-value problem by a method [21 based on 
an implicit finite-difference scheme [6] with a high order of accuracy. The difference equa- 
tions were solved by the trial-run method with iterations at each ~ step. The difference 
equations were linearized using the values of the functions obtained in the previous itera- 
tion. 

The procedure used in numerically integrating the system in each iteration was as fol- 
lows. We assinged a linear initial approximation for f(q) and e(n) on the critical line. We 
then determined the profiles of pressure p and the pressure gradient P2- The pressure gradi- 

!0p 
ent P2 = u0 0~ was found from an equation obtained by differentiation of the momentum equa- 

tion in a projection on a normal with respect to the parameter q. In Dorodnitsyn variables 
(1.6) for p and P2, we obtained first-order ordinary differential equations which we inte- 
grated from the shock wave to the surface of the body by means of Simpson's formula. Density 
0 was determined from the equation of state. Total viscosity D2 was found from Eqs. (1.4), 
molecular viscosity p was determined from the Sutherland conservation law, and total thermal 
conductivity was found from (1.5). We then integrated the equations for the corrected stream 
function f and temperature 8 and calculated the new value for the decay of the shock wave in 
Dorodnitsyn variables A. The first boundary condition of system (1.2) was used to calculate 
A. Iterations on the given ray were performed until the maximum difference of all the pro- 
files and ~ in a given iteration from the same in previous iteration was less than the speci- 
fied accuracy. 

2. Numerical calculations were performed in the transverse direction on a nonuniform 
grid which was made denser approaching the surface of the body. The total number of inter- 
vals was 59. 

After solving the difference equations, we calculated the distributions of heat flux qw 
and the friction coefficient Cf (heat flux was referred to p~V~ a, while friction was referred 
to p~V~ 2) by means of the formulas 

q~ - -  v ~ e  ~ ~ (y = 0), c j  = l / R e  ~ ~ (y = 0). 

68 



0r 

~,5 

a 

k- 

i 7 \  

5 ~ 

P~ ~ . .  c /  

ll), 
i x 

o.51 F, \ \  ! . . H " /  " ~  " 

~m t^i--~ l b 

l \,,, ' ,  

G,5 

o ~5 

F i g .  1 

I n  t h e  a n a l y s i s  o f  t h e  t r a j e c t o r y  o f  t h e  body and i t s  t o t a l  a e r o d y n a m i c  h e a t i n g ,  an 
i m p o r t a n t  r o l e  i s  p l a y e d  by i n t e g r a l  c h a r a c t e r i s t i c s :  t h e  o v e r a l l  c o e f f i c i e n t  o f  c o n v e c -  
t i v e  h e a t  t r a n s f e r  

m S 

L 

0 

t h e  c o e f f i c i e n t  o f  wave r e s i s t a n c e  

for the solid of revolution, 

for the plane body, 

CD = ~ sin cc dS 
S 
L 

ca = ! f -~ sin ~ dZ 
rm 0 

o 

for the solid of revolution, 

for the plane body, 

and the drag coefficient 

5m ,) 
8 
L 

C~= ! [},~cos a d l  
rm 0 

0 

for the solid of revolution, 

for the plane body, 

where S m and S are the areas of the midsection of the solid of revolution and its lateral 

surface; L is the arc length; r = = 2~z; rm = V2~zL; z and r are the coordinates along the 

symmetry axis of the body and the normal to it; and ~ is a parameter. 
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We a s s i g n e d  a body l e n g t h  z L = 15 f o r  a l l  o f  t h e  v a r i a n t s .  Here ,  t h e  l e n g t h  o f  t h e  a r c  
L i s  d i f f e r e n t  f o r  d i f f e r e n t  v a l u e s  of  6. By c h a n g i n g  t h e  p a r a m e t e r  B, we can change  t h e  
e f f e c t i v e  f l a r e  o f  t h e  p a r a b o l o i d  and t h e  p a r a b o l i c  c y l i n d e r .  For  g r e a t e r  c o n v e n i e n c e  in  
i n t e r p r e t i n g  t h e  r e s u l t s  o f  t h e  c a l c u l a t i o n s ,  t h e  p a r a b o l o i d  and p a r a b o l i c  c y l i n d e r  were 
made t o  c o r r e s p o n d  t o  a s p h e r i c a l l y  b l u n t  cone ( o r  wedge) h a v i n g  t h e  same b l u n t i n g  r a d i u s  R0 
and m i d s e c t i o n  r a d i u s  r m. With an a s s i g n e d  l e n g t h  L, t h e  f l a r e  h a l f - a n g l e  8c o f  such  a cone  
(wedge)  i s  found  f rom t h e  f o r m u l a  

s in~c=-- ( t - -a)  a + ] / ~  a =  ~__. 
J -~- a 2 , z L 

Similarly, having assigned the half-angle B c, we can unambiguously determine B: 

~3 = Z L ( I  - -  COS ~c)/( l  - -  sin ~c)" 

In the calculations we performed, we assigned both the parameter 6 and the half-angle of the 
equivalent cone (wedge) 6c. A numerical solution was obtained in the following ranges of the 
determining parameters of the problem: l0 s 2 Re ! 108 , ~ = 1.4, T w = 0.15, ~ = 0.5, 0 < B < 

5, o = 0.7, OT = 0.75. 

Figures la-c and 2a, b show the distribution of the friction coefficient Cf, heat flux 
qw, pressure Pw, and decay of the shock wave Ys over the surface of a parabolic cylinder 
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(solid curves) and paraboloid (dashed curves). The results in Fig. 1 were obtained with 
Re = 3"10 ~ (lines i-3 correspond to B = 0.276, (Bc = i0~ 0.69 (15~ 4.02 (30~ while the 
results in Fig. 2 were obtained with $ = 0.276 (Bc = i0~ and Re = 106, 3"106 , 1107 (lines 
i - 3 ) .  

Figure 3 shows the coefficient of integral heat flux C H and the total drag coefficient 
C~ of the parabolic cylinder (solid curves) and paraboloid (dashed curves) in relation to Re 
for different B: curves i, 1'-3, 3' correspond to B = 0.276; 0.69, and 1.375 (8c = 20~ 
It is evident that the coefficients C H and C T decrease monotonically with an increase in Re. 

Figure 4 shows the distributions of qw (solid curves) and Cf (dashed curves) on the sur- 
face of the paraboloid with B = 1 and Re = 3-10 ~ in the laminar and turbulent (lines i, 2) 
regimes. Also shown are the distributions of qw~ and Cf~ (solid curves 3, 4) and qwz = qws 

q~,t, C/~ = C/s ~ C/t (dot-dash curves 3, 4). The heat fluxes qw~, qwt and friction coeffi- 
cients Cf~, Cft were calculated from analytical formulas in [2] for both laminar and turbulent 
regimes of flow in the boundary layer. 

The numerical calculations showed that the form of the body, the flow regime (Reynolds 
number), and effective flare of the body have a significant effect on the dynamic and thermal 
characteristics of plane and axisymmetric bodies. 
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